An RNA editing/dsRNA binding-independent gene regulatory mechanism of ADARs and its clinical implication in cancer

نویسندگان

  • Lihua Qi
  • Yangyang Song
  • Tim Hon Man Chan
  • Henry Yang
  • Chi Ho Lin
  • Daryl Jin Tai Tay
  • HuiQi Hong
  • Sze Jing Tang
  • Kar Tong Tan
  • Xi Xiao Huang
  • Jaymie Siqi Lin
  • Vanessa Hui En Ng
  • Julien Jean Pierre Maury
  • Daniel G. Tenen
  • Leilei Chen
چکیده

Adenosine-to-inosine (A-to-I) RNA editing, catalyzed by Adenosine DeAminases acting on double-stranded RNA(dsRNA) (ADAR), occurs predominantly in the 3' untranslated regions (3'UTRs) of spliced mRNA. Here we uncover an unanticipated link between ADARs (ADAR1 and ADAR2) and the expression of target genes undergoing extensive 3'UTR editing. Using METTL7A (Methyltransferase Like 7A), a novel tumor suppressor gene with multiple editing sites at its 3'UTR, we demonstrate that its expression could be repressed by ADARs beyond their RNA editing and double-stranded RNA (dsRNA) binding functions. ADARs interact with Dicer to augment the processing of pre-miR-27a to mature miR-27a. Consequently, mature miR-27a targets the METTL7A 3'UTR to repress its expression level. In sum, our study unveils that the extensive 3'UTR editing of METTL7A is merely a footprint of ADAR binding, and there are a subset of target genes that are equivalently regulated by ADAR1 and ADAR2 through their non-canonical RNA editing and dsRNA binding-independent functions, albeit maybe less common. The functional significance of ADARs is much more diverse than previously appreciated and this gene regulatory function of ADARs is most likely to be of high biological importance beyond the best-studied editing function. This non-editing side of ADARs opens another door to target cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The dsRBP and inactive editor ADR-1 utilizes dsRNA binding to regulate A-to-I RNA editing across the C. elegans transcriptome.

Inadequate adenosine-to-inosine editing of noncoding regions occurs in disease but is often uncorrelated with ADAR levels, underscoring the need to study deaminase-independent control of editing. C. elegans have two ADAR proteins, ADR-2 and the theoretically catalytically inactive ADR-1. Using high-throughput RNA sequencing of wild-type and adr mutant worms, we expand the repertoire of C. elega...

متن کامل

The properties of a tRNA-specific adenosine deaminase from Drosophila melanogaster support an evolutionary link between pre-mRNA editing and tRNA modification.

Pre-mRNA editing involving the conversion of adenosine to inosine is mediated by adenosine deaminases that act on RNA (ADAR1 and ADAR2). ADARs contain multiple double-stranded RNA(dsRNA)-binding domains in addition to an adenosine deaminase domain. An adenosine deaminase acting on tRNAs, scTad1p (also known as scADAT1), cloned from Saccharomyces cerevisiae has a deaminase domain related to the ...

متن کامل

Functions of the RNA Editing Enzyme ADAR1 and Their Relevance to Human Diseases

Adenosine deaminases acting on RNA (ADARs) convert adenosine to inosine in double-stranded RNA (dsRNA). Among the three types of mammalian ADARs, ADAR1 has long been recognized as an essential enzyme for normal development. The interferon-inducible ADAR1p150 is involved in immune responses to both exogenous and endogenous triggers, whereas the functions of the constitutively expressed ADAR1p110...

متن کامل

How does RNA editing affect dsRNA-mediated gene silencing?

In general, double-stranded RNA (dsRNA)-binding proteins (dsRBPs) are not sequence-specific. A dsRNA molecule in a cell will interact with any dsRBP it comes in contact with, suggesting that different dsRNA-mediated pathways intersect and affect each other. This paper analyzes evidence that the ADAR RNA editing enzymes, which act on dsRNA, affect dsRNA-mediated gene silencing pathways. Examples...

متن کامل

Modulation of ADAR1 editing activity by Z-RNA in vitro

RNA editing by A-to-I modification has been recognized as an important molecular mechanism for generating RNA and protein diversity. In mammals, it is mediated by a family of adenosine deaminases that act on RNAs (ADARs). The large version of the editing enzyme ADAR1 (ADAR1-L), expressed from an interferon-responsible promoter, has a Z-DNA/Z-RNA binding domain at its N-terminus. We have tested ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2017